Exact Differential Equation:

Definition: Exact Equation

If An expression $M(x, y) d x+N(x, y) d y$ is an exact differential in a region R corresponding to the differential of some function $f(x, y)$.
A first-order DE of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be an exact equation, if the left side is an exact differential.

Exact Differential Equation:

Definition: Exact Equation

If An expression $M(x, y) d x+N(x, y) d y$ is an exact differential in a region R corresponding to the differential of some function $f(x, y)$.
A first-order DE of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is said to be an exact equation, if the left side is an exact differential.

Remark

If the differential of $f(x, y)$ is $M(x, y) d x+N(x, y) d y$, then $f(x, y)=c$ is an implicit solution to the DE
$M(x, y) d x+N(x, y) d y=0$

Exact Equation:

Theorem:

Let $M(x, y)$ and $N(x, y)$ be continuous with continuous first partial derivatives on a rectangular region R of the $x y$-plane. Then, a necessary and sufficient condition that $M(x, y) d x+N(x, y) d y$ be an exact differential is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Exact Equation:

Theorem:

Let $M(x, y)$ and $N(x, y)$ be continuous with continuous first partial derivatives on a rectangular region R of the $x y$-plane. Then, a necessary and sufficient condition that $M(x, y) d x+N(x, y) d y$ be an exact differential is

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Facts

- $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ implies exactness.
- exactness implies $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$

Solution Method:

Solution Method:

Since $\partial f / \partial x=M(x, y)$, we have.

$$
\begin{equation*}
f(x, y)=\int M(x, y) d x+g(y) \tag{i}
\end{equation*}
$$

Solution Method:

Solution Method:

Since $\partial f / \partial x=M(x, y)$, we have.

$$
\begin{equation*}
f(x, y)=\int M(x, y) d x+g(y) \tag{i}
\end{equation*}
$$

Differentiating (i) with respect to y and assume

$$
\partial f / \partial y=N(x, y)
$$

Then

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y)=N(x, y) \tag{ii}
\end{equation*}
$$

And $\quad g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x$

Solution Method:

Solution Method:

Since $\partial f / \partial x=M(x, y)$, we have.

$$
\begin{equation*}
f(x, y)=\int M(x, y) d x+g(y) \tag{i}
\end{equation*}
$$

Differentiating (i) with respect to y and assume

$$
\partial f / \partial y=N(x, y)
$$

Then

$$
\begin{equation*}
\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y)=N(x, y) \tag{ii}
\end{equation*}
$$

And $\quad g^{\prime}(y)=N(x, y)-\frac{\partial}{\partial y} \int M(x, y) d x$
Integrate (ii) with respect to y to get $g(y)$, and substitute the result into (i) to obtain the implicit solution $f(x, y)=c$.

Example 1

Solve the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.

Example 1

Solve the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.

With $M(x, y)=2 x y$, we have Thus it is exact.

Example 1

Solve the $\operatorname{DE}\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.
With $M(x, y)=2 x y$,

$$
N(x, y)=x^{2}-1
$$

we have
$\partial M / \partial y=2 x=\partial N / \partial x$
Thus it is exact.

There exists a function f such that

$$
\begin{aligned}
d f & =M d x+N d y \\
& =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
\end{aligned}
$$

Example 1

Solve the DE $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0$.
With $M(x, y)=2 x y$,
we have

$$
\begin{array}{r}
N(x, y)=x^{2}-1, \\
\partial M / \partial y=2 x=\partial N / \partial x
\end{array}
$$

Thus it is exact.
There exists a function f such that

$$
\begin{aligned}
d f & =M d x+N d y \\
& =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
\end{aligned}
$$

So
$M=\partial / \partial x=2 x y$,

$$
N=\not \partial / \partial y=x^{2}-1
$$

Example 1

Then

$$
\begin{aligned}
& f(x, y)=x^{2} y+g(y) \\
& \partial f / \partial y=x^{2}+g^{\prime}(y)=x^{2}-1 \\
& g^{\prime}(y)=-1 \\
& g(y)=-y
\end{aligned}
$$

Example 1

Then

$$
\begin{aligned}
& f(x, y)=x^{2} y+g(y) \\
& \partial f / \partial y=x^{2}+g^{\prime}(y)=x^{2}-1 \\
& g^{\prime}(y)=-1, \\
& g(y)=-y
\end{aligned}
$$

Hence $f(x, y)=x^{2} y-y$, and the solution is

$$
x^{2} y-y=c
$$

Example 2

Solve $\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, \quad y(0)=2$

Example 2

Solve $\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, \quad y(0)=2$
Rewrite the DE in the form

$$
\left(\cos x \sin x-x y^{2}\right) d x+y\left(1-x^{2}\right) d y=0
$$

Example 2

Solve $\frac{d y}{d x}=\frac{x y^{2}-\cos x \sin x}{y\left(1-x^{2}\right)}, \quad y(0)=2$
Rewrite the DE in the form

$$
\left(\cos x \sin x-x y^{2}\right) d x+y\left(1-x^{2}\right) d y=0
$$

Since

$$
\partial M / \partial y=-2 x y=\partial N / \partial x \quad(\text { This DE is exact })
$$

There exists a function f such that

$$
\begin{aligned}
d f & =M d x+N d y \\
& =\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
\end{aligned}
$$

Example 2

So

$$
M=\not \partial / \partial x=\cos x \sin x-x y^{2}, \quad N=\not \subset / \partial y=y\left(1-x^{2}\right)
$$

Example 2

So
$M=\partial / \partial x=\cos x \sin x-x y^{2}, \quad N=\partial f / \partial y=y\left(1-x^{2}\right)$
Then $\quad f^{\prime} / \partial y=y\left(1-x^{2}\right)$

$$
\begin{aligned}
& f(x, y)=\frac{1}{2} y^{2}\left(1-x^{2}\right)+h(x) \\
& \partial \prime \partial x=-x y^{2}+h^{\prime}(x)=\cos x \sin x-x y^{2}
\end{aligned}
$$

Example 2

So
$M=\partial f / \partial x=\cos x \sin x-x y^{2}$,

$$
N=\partial f / \partial y=y\left(1-x^{2}\right)
$$

Then

$$
\begin{aligned}
& \partial f / \partial y=y\left(1-x^{2}\right) \\
& f(x, y)=\frac{1}{2} y^{2}\left(1-x^{2}\right)+h(x) \\
& \partial f / \partial x=-x y^{2}+h^{\prime}(x)=\cos x \sin x-x y^{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
& h^{\prime}(x)=\cos x \sin x \\
& h(x)=-\frac{1}{2} \cos ^{2} x
\end{aligned}
$$

Example 2

So
$M=\partial f / \partial x=\cos x \sin x-x y^{2}$,

$$
N=\partial f / \partial y=y\left(1-x^{2}\right)
$$

Then

$$
\begin{aligned}
& \partial f / \partial y=y\left(1-x^{2}\right) \\
& f(x, y)=\frac{1}{2} y^{2}\left(1-x^{2}\right)+h(x) \\
& \partial f / \partial x=-x y^{2}+h^{\prime}(x)=\cos x \sin x-x y^{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
& h^{\prime}(x)=\cos x \sin x \\
& h(x)=-\frac{1}{2} \cos ^{2} x
\end{aligned}
$$

Thus

$$
\frac{1}{2} y^{2}\left(1-x^{2}\right)-\frac{1}{2} \cos ^{2} x=c_{1}
$$

or

$$
y^{2}\left(1-x^{2}\right)-\cos ^{2} x=c
$$

where $c=2 c_{1}$.

Example 2

Now $y(0)=2$, so $c=3$.
The solution is

$$
y^{2}\left(1-x^{2}\right)-\cos ^{2} x=3
$$

Integrating Factors:

Introduction:

It is sometimes possible to convert a differential equation that is not exact into an exact equation by multiplying the equation by a suitable integrating factor $\mu(x, y)$:

$$
\begin{gathered}
M(x, y) d x+N(x, y) d y=0 \\
\mu(x, y) M(x, y) d x+\mu(x, y) N(x, y) d y=0
\end{gathered}
$$

For this equation to be exact, we need

$$
\begin{aligned}
& (\mu M)_{y}=(\mu N)_{x} \\
& M \mu_{y}+M_{y} \mu=N \mu_{x}+N_{x} \mu \\
& N \mu_{x}-M \mu_{y}=\mu\left(M_{y}-N_{x}\right)
\end{aligned}
$$

Integrating Factors:

- μ is a function of x only

If μ is a function of x alone, then $\mu_{y}=0$ and hence we solve

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu
$$

provided right side is a function of x only.

Integrating Factors:

- μ is a function of x only

If μ is a function of x alone, then $\mu_{y}=0$ and hence we solve

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu,
$$

provided right side is a function of x only.
$\bullet \mu$ is a function of y only
If μ is a function of y alone, then $\mu_{x}=0$ and hence we solve

$$
\frac{d \mu}{d y}=\frac{N_{x}-M_{y}}{M} \mu,
$$

provided right side is a function of y only.

Integrating Factors:

Summary

We summarize the results for $M(x, y) d x+N(x, y) d y=0$

- If $\frac{M_{y}-N_{x}}{N}$ depends only on x, then $\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$

Integrating Factors:

Summary

We summarize the results for $M(x, y) d x+N(x, y) d y=0$

- If $\frac{M_{y}-N_{x}}{N}$ depends only on x, then $\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$
- If $\frac{N_{x}-M_{y}}{M}$ depends only on y, then $\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}$

Integrating Factors:

Summary

We summarize the results for $M(x, y) d x+N(x, y) d y=0$

- If $\frac{M_{y}-N_{x}}{N}$ depends only on x, then $\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$
- If $\frac{N_{x}-M_{y}}{M}$ depends only on y, then $\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y}$
- If we can write $M=y f(x y) \quad N=x g(x y)$ then

$$
\mu(x, y)=\frac{1}{x M-y N}
$$

Example 3

The nonlinear DE: $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
Since $M=x y$,
$N=2 x^{2}+3 y^{2}-20$
$M_{y}=x$,
$N_{x}=4 x$.

Example 3

The nonlinear DE: $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
Since $\quad M=x y, \quad N=2 x^{2}+3 y^{2}-20$

$$
M_{y}=x
$$

$$
N_{x}=4 x
$$

$\frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20}$ depends on both x and y.

Example 3

The nonlinear DE: $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
Since $\quad M=x y, \quad N=2 x^{2}+3 y^{2}-20$

$$
M_{y}=x
$$

$$
N_{x}=4 x
$$

$\frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20}$ depends on both x and y.
$\frac{N_{x}-M_{y}}{M}=\frac{3}{y}$ depends only on y.

Example 3

The nonlinear DE: $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
Since $\quad M=x y, \quad N=2 x^{2}+3 y^{2}-20$

$$
M_{y}=x
$$

$$
N_{x}=4 x
$$

$\frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20}$ depends on both x and y.
$\frac{N_{x}-M_{y}}{M}=\frac{3}{y}$ depends only on y.
The integrating factor is $e^{\int \frac{3}{y} d y}=e^{3 \ln y}=y^{3}=\mu(y)$

Example 3

The nonlinear DE: $x y d x+\left(2 x^{2}+3 y^{2}-20\right) d y=0$ is not exact.
Since $\quad M=x y, \quad N=2 x^{2}+3 y^{2}-20$

$$
M_{y}=x, \quad N_{x}=4 x
$$

$\frac{M_{y}-N_{x}}{N}=\frac{x-4 x}{2 x^{2}+3 y^{2}-20}=\frac{-3 x}{2 x^{2}+3 y^{2}-20}$ depends on both x and y.
$\frac{N_{x}-M_{y}}{M}=\frac{3}{y}$ depends only on y.
The integrating factor is $e^{\int \frac{3}{y} d y}=e^{3 \ln y}=y^{3}=\mu(y)$
then the resulting equation is

$$
x y^{4} d x+\left(2 x^{2} y^{3}+3 y^{5}-20 y^{3}\right) d y=0
$$

Try to show that the solution is:

$$
\frac{1}{2} x^{2} y^{4}+\frac{1}{2} y^{6}-5 y^{4}=c
$$

